
CPS122 Lecture: Encapsulation, Inheritance, and Polymorphism

Last revised January 17, 2023
Objectives:

1. To review the basic concept of inheritance
2. To introduce Polymorphism.
3. To introduce the notions of abstract methods, abstract classes, and interfaces.
4. To introduce issues that arise with subclasses - protected visibility, use of the

super() constructor
5. To discuss the notion of multiple inheritance and Java’s approach to it

 Materials:

1. Projectable of person as employee or student hierarchy class diagram and
2. Project able of Java code for this
3. Projectable of hierarchy with faculty and staff subclasses of employee
4. Projectable of Java code for this
5. Venn diagram showing law of substitution
6. Projectable of basic BankAccount hierarchy
7. Demo and handout of BankAccount hierarchy
8. Projectable of BankAccount hierarchy with HighBalanceSavingsAccount
9. Netbeans OverrideDemo project
10.Projectable of employee class where all employees are paid hourly
11.Projectable of SalariedEmployee as override of Employee paid hourly
12.Employees demo program - Handout and online demo, projectable versions of

code snippets
13.Projectable of stages in development of Employee hierarchy
14.Projectable of equivalent ways of declaring a method in an interface
15.Projectable of illegal implementation of a method of an interface
16.Projectable of final on method
17.Projectables of Robot hierarchy in book and different behaviors of each, plus

implementation of Butler (Figures 4.29, 4.30 and Table 4.4)
18.Projectable of multiple inheritance examples
19.Projectable of repeated inheritance problem
20.Projectable of containment as an alternative to multiple inheritance

1

I. Introduction

A. Throughout this course, we have been talking about a particular kind
of computer programming - object-oriented programming (or OO). As
an approach to programming, OO is characterized by three key
features (sometimes called the “OO Pie”).

1. Polymorphism

2. Inheritance

3. Encapsulation

(We’ll actually talk about these in reverse order!)

B. Although we have not used the term per se, we have already made use
of encapsulation.

1. In OO systems, the class is the basic unit of encapsulation. A class
encapsulates data about an object with methods for manipulating
the data in a controlled manner, while controlling access to the data
and methods from outside the class so as to ensure consistent
behavior.

2. This is really what the visibility modifier “private” is all about.
When we declare something in a class to be private, we are saying
that it can only be accessed by methods defined in that class - that
is, it is encapsulated by the class and is not accessible from outside
without going through the methods that are defined in the class.

C. In this series of lectures, we will focus on inheritance and
polymorphism.

2

II. Inheritance

A. One of the main uses of inheritance is to model hierarchical structures
that exist in the world.

Example: Consider people at Gordon college. Broadly speaking, they
fall into two categories: employees and students.

 (We will not, for now, consider the possibility that a person might be
both a student and an employee. We will assume a person is either one
or the other.)

1. There are some features that both employees and students have in
common - whether a person is an employee or a student, he or she
has a name, address, date of birth, etc.

2. There are also some features that are unique to each kind of person
- e.g. an employee has a pay rate, but a student does not; a student
has a gpa, but an employee does not, etc.

3. How can we represent this hierarchy as a class structure?

ASK

PROJECT

Person

Employee Student

3

4. How would we represent this in Java?

ASK

class Person  
{  

...  
}  
 
class Employee extends Person  
{  

...  
}  
 
class Student extends Person  
{  

...  
}  
 

PROJECT

5. With this structure, the classes Employee and Student inherit all the
features of the class Person.

6. In addition, each of the classes Employee and Student can have
features of its own not shared with the other classes.

B. Basic terminology: If a class B inherits from a class A:

1. We say that B extends A or B is a subclass of A - So we say
Employee extends Person, or Employee is a subclass of Person.

The term subclass comes from the mathematical notion of subset -
the set of all Employees is a subset of the set of all Persons.

2. We say that A is the base class of B or the superclass of B - So we say
Person is the base class of Employee, or the superclass of Employee.

The term superclass comes from the mathematical notion of sets as well -
the set of a Persons is a superset of the set of all Persons.

3. This notion can be extended to multiple levels - e.g. if C extends B and
B extends A, then we can say not only that C is a subclass of B, but also

4

that it is a subclass of A. In this case, we sometimes distinguish
between direct subclasses/base class and indirect subclasses/base class.

Example: suppose we had the following hierarchy

PROJECT

Now we could say that Faculty is direct subclass of Employee, and an
indirect subclass of Person, etc.

4. This could be represented in Java by adding the following two classes to
the hierarchy we developed earlier.

class Faculty extends Employee  
{  

...  
}  
 
class Staff extends Employee  
{  

...  
}  
 

PROJECT 

Person

Employee Student

Faculty Staff

5

C. Crucial to inheritance is what is sometimes called the law of substitution:

1. If a class B inherits from (extends) a class A, then an object of class
B must be able to be used anywhere an object of class A is expected
- i.e. you can always substitute a B for an A.

Thus, in the above example, the inheritance structure says that an
Employee can always be used anywhere that a Person is needed.

2. This notion is what allows us to call B a subclass of A or A a
superclass of B. The set of all “B” objects is a subset of the set of
all “A” objects - which potentially includes other “A” objects that
are not “B” objects - e.g.

PROJECT

3. This relationship is sometimes expressed by using the phrase “is a”
- we say a B “is a” A.

4. Remembering the law of substitution will help prevent some
common mistakes that arise from misusing inheritance.

a) The “is a” relationship is similar to another relationship called
the containment relationship, or “has a”. Sometimes inheritance
is incorrectly used where containment should be used instead.

The meaning of “B extends A”

The set of all A objects

The set of all B objects

6

b) Example: suppose we were building a software model of the
human body, and we wanted to create a class Person to model a
whole person, and a class Arm to model a person’s arms. The
correct relationship between Arm and Person is a “has a”
relationship - a Person “has a” Arm (actually two of them), not
“is a” - we cannot say that an Arm is a Person, because we
cannot substitute an Arm everywhere a Person is needed.

5. We've seen how inheritance can be used for generalization - e.g. the
class Person generalizes the notion of Student and Employee.

6. As used in the OO world, inheritance can also be used for
specialization - e.g. in a graphics system we may have a class
Square that is a subclass of the class Rectangle - meaning that
Square is a specialization of Rectangle, being a Rectangle with
equal sides. This is consistent with the law of substitution -
anywhere a rectangle is needed, a square can be used.

Of course, this is a different concept from the way we speak of
inheritance in terms of human relationships. For example, I
inherited my mother’s hair color - but that does mean that I’m a
specialization of my mother!

D. A key aspect of inheritance is that a subclass ordinarily inherits all the
features of its base class. For example, consider the following
example of a class hierarchy for bank accounts (similar to the example
we looked at earlier, but modified to incorporate two different kinds of
bank account- checking and savings - with a common base class, and
with some other changes as well.)

7

PROJECT

A Java implementation this hierarchy might look like the following:

HANDOUT

Observe the following:

1. The classes SavingsAccount and CheckingAccount inherit the
features of BankAccount

a) Since a BankAccount has an owner and a balance, so does a
SavingsAccount or a CheckingAccount.

b) Since a BankAccount has methods deposit(), reportBalance(),
and getAccountNumber(), so does a SavingsAccount or a
CheckingAccount.

2. The constructors for SavingsAccount and CheckingAccount must
invoke the constructor for BankAccount “passing up” the owner.
This is done via super(owner) at the start of each.

3. Savings account adds features that an ordinary BankAccount does
not have - e.g. payInterest() and setInterestRate().

4. CheckingAccount overrides the withdraw() method of
BankAccount.

BankAccount

SavingsAccount CheckingAccount

8

a) In the special case where the checking account balance is insufficient
for the withdrawal, but the customer has a savings account with
enough money in it, the withdrawal is made from savings instead.

b) In all other cases, the inherited behavior is used by invoking
super.withdraw(amount).

5. Certain features of BankAccount are declared protected (rather than
private). This specifies that the subclasses may access them,
though other classes may not.

a) Note how the payInterest() method of SavingsAccount needs to
make use of the inherited feature current balance, and the
withdraw() override in CheckingAccount0 needs to make use of
both the inherited features currentBalance and owner.

b) On the other hand, accountNumber remains private in
BankAccount, which precludes the subclasses from using it.

E. In designing a class hierarchy, methods should be placed at the
appropriate level. For example, in the BankAccountExample:

1. deposit(), reportBalance(), and getAccountNumber() are defined in
the base class BankAccount, and so are inherited by the two
subclasses.

If they were defined in the subclasses, we would have to repeat the
code twice - extra work and an invitation to inconsistency should
we need to make modifications.

2. On the other hand, payInterest() and setInterestRate() are defined in
SavingsAccount, because they are not relevant for
CheckingAccounts.

9

3. withdraw() is defined in BankAccount and overridden in
CheckingAccount. Why is this better than simply defining separate
versions in CheckingAccount and SavingsAcccount?

ASK

Although CheckingAccount does override the inherited method, it
does make use of it in most cases via the super.withdraw() call.
This would not be possible if separate versions were defined in
CheckingAccount and SavingsAccount, with no base version in
BankAccount.

III.Polymorphism

A. The above example also illustrates polymorphism, which we now want to
define more formally. In brief, because of the law of substitution, it is
possible for a variable that is declared to refer to an object of a base class to
actually refer at run time to an object of that class or any of its subclasses.

B. Example: Continuing with our BankAccount example

REFER TO HANDOUT

1. Suppose we declared a variable as follows:

BankAccount account;

2. We could now make it refer to either a CheckingAccount or a
SavingsAccount - i.e. (assuming a Customer variable named
aardvark exists) either of the following would be legitimate:

account = new CheckingAccount(aardvark);
or

account = new SavingsAccount(aardvark);

3. If, however, we tried to perform

account.withdraw(some amount);

10

with an amount that exceeds the balance, the way it would handle
the operation would depend on its actual type

a) If it were actually a SavingsAccount, it would reject the
operation in all cases

b) If it were actually a CheckingAccount, it would see if its owner
had a savings account with sufficient balance.

C. Another example: Show Netbeans project OverrideDemo. Note class
declarations for A, B, and C - B extends A and C extends B and
therefore A.

D.

1. Show part initially not commented out. Ask class what output
should be and then run. Explain as necessary.

2. Repeat for b-g sections by removing /* at start. Handle parts that
are illegal by using // at start of line. Explain as necessary.

Note that some things are rejected by the compiler on the basis of
the declared types of the variables.

3. We saw earlier that a consequence of inheritance is that a class can
override a method of its base class, and the method that is used
depends on the actual type of the receiver of a message. Work
through saySomething and speak sections.

The fact that the overridden method may be used in place of the
base class method depending on the actual type of the object is
called dynamic binding or dynamic method invocation.

4.

(BTW: Not all programming languages handle this the same way.
For example, in C++ dynamic binding is only used if you explicitly
ask for it)

DEMO using saySomething() peak() methods

11

5. Overridden methods must have the same signature as the inherited
method they override - otherwise we have an overload, not an override.

EXAMPLE: Suppose, in the above, I instead defined subclass C with the
saySomething() method defined as saySomething(short i), instead of
having a parameter is of type int..

class C extends B  
{  

public void saySomething(short i)  
{ System.out.println(-1); }  

}  

Now what would I get if I tried someC.saySomething(1)?

What will the output be?

ASK

DEMO

What I actually have in this case is an overload rather than an override, If
I wanted to get the C method, I would have to explicitly use a short
someC.saySomething((short) -1)  

DEMO

6. As we have already seen, when a base class method is overridden
in a subclass, the base class method becomes invisible unless we
use a special syntax to call it:

super.<methodname> (<parameters>)

DEMO using the speak2() methods

12

IV.Abstract Methods, Abstract Classes, and Interfaces

A. Returning again to our BankAccount example, would it be meaningful
- in this case - to have a BankAccount object that is neither a
CheckingAccount nor a SavingsAccount?

ASK

1. In a case like this, we can declare the base class BankAccount to be
abstract. (Note in code). An abstract class cannot have an object
that belongs to it, but not to one of its subclasses, which is what we
desire in this case.

2. It is not, however, always the case that a base class should be abstract.
Suppose our bank created a new kind of savings account called a
HighBalanceSavingsAccount which has a minimum balance of $10,000
but pays a higher interest rate. We might picture this as follows:

PROJECT

In this case, though BankAccount would be an abstract class,
SavingsAccount would not - it is meaningful to have a SavingsAccount
that is not a HighBalanceSavingsAccount.

BankAccount

SavingsAccount CheckingAccount

HighBalance
SavingsAccount

13

B. There are other issues involved in creating an abstract class as well.

For example: Suppose we were developing a payroll system for a
company where all the employees are paid based on the number of
hours worked each week.

1. We might develop an Employee class like the following:

PROJECT

 
 
 

Now suppose we add a few employees who are paid a fixed salary.

a) We could create a new class SalariedEmployee that overrides
the weeklyPay() method, as follows: (PROJECT)

public class Employee  
{  
 public Employee(String name, String ssn, double hourlyRate)  
 {  
 ...  
 this.hourlyRate = hourlyRate;  
 }
 public String getName()
 ...
 public String getSSN()  
 ...  
 public double weeklyPay()  
 {  
 // Pop up a dialog box asking for hours worked this week  
 return hoursWorked * hourlyRate;  
 // Actually should reflect possible overtime in above!  
 }  
 ...
 private String name;
 private String ssn;  
 private double hourlyRate;  
}  

14

b) It would now be possible to create an array of Employee objects, some
of whom would actually be SalariedEmployees - e.g. (PROJECT)

c) Further, we could iterate through the array and call the weeklyPay()
method of each, without regard to which type of employee each
represents, and the correct version would be called: (PROJECT)

Note that, in each case, the appropriate version of weeklyPay() is
called - e.g. for Big Boss, the SalariedEmployee version is called and
a check for 1923.08 is printed; for Lowly Peon a dialog is popped up
asking for hours worked and the appropriate amount is calculated
based on a rate of 4.75 per hour. This is another example of
polymorphism.

2. But this is not a good solution. Why?

ASK

Because SalariedEmployee inherits from Employee, every
SalariedEmployee has an hourly rate field, even though it is not
used. (The hourlyRate field is private, so it is not inherited in the
sense that it is not accessible from within class SalariedEmployee;

class SalariedEmployee extends Employee  
{  
 public SalariedEmployee(String name,String ssn,double
annualSalary)
 ...  
 public double weeklyPay()  
 { return annualSalary / 52; }  
 ...  
 private double annualSalary;  
}

Employee [] employees = new Employee[10];  
employees[0]=new SalariedEmployee(“Big Boss”,“999-99-9999”,100000.00);  
employees[1]=new Employee(“Lowly Peon”, “111-11-1111”, 4.75);  
...

for (int i = 0; i < employees.length; i ++)  
printCheck(employees[i].getName, employees[i].weeklyPay());

15

however, it does exist in the object and is initialized by the
constructor - so a value must be supplied to the constructor even
though it is not needed!)

This can be seen from the following UML Class diagram:

PROJECT

(1)Each box stands for a class. The arrow with a triangle at the
head connecting them indicates that the class
SalariedEmployee extends Employee - i.e. a
SalariedEmployee “isa” Employee.

(2)Each box has three compartments. The first contains the
name of the class (and potentially certain other information
about the class as we shall see later). The second contains
the fields of the class (the instance and class variables). The
third contains the methods.

- annualSalary : double

Employee

SalariedEmployee

- name
- ssn
- hourlyRate : double
+Employee(String,
 String, double)
+ getName() : String
+ getSSN(): String
+ weeklyPay(): double

+ SalariedEmployee
 (String,String,double)
+ weeklyPay(): double

16

(3)Each field and method is preceded by a visibility specifier.
The possible specifiers are:

(a)+ - accessible to any object - this corresponds to Java
public

(b)- - accessible only to objects of this class - this
corresponds to Java private

(c)# - accessible only to objects of this class or its subclasses
- which corresponds to Java protected. Note that, in this
example, name and ssn are not made protected - the
subclass has access to them through public methods
getName() and getSSN().

(4)Each field has a type specifier, and each method has a return
type specifier.

(5)Each method has type specifiers for its parameters (its
signature).
A subclass includes all the fields of its superclass (though
they may not be accessible in the subclass if they are
declared private). Thus, a SalariedEmployee object has four
fields - name, ssn, and hourly rate (inherited from Employee)
and annualSalary (defined in the class)

b) In this case, each object that belongs to SalariedEmployee has
an hourlyRate field, which is not meaningful.

c) What would be a better solution?

ASK

Create a class hierarchy consisting of a base class called
Employee and two subclasses - one called HourlyEmployee and
one called SalariedEmployee. Only HourlyEmployees would
have an hourlyRate field, while SalariedEmployees would have
an annualSalary field. This is expressed by the following
diagram:

17

PROJECT

Notice that what we have done is to leave in the base class only
those fields and methods which are common to the two
subclasses. We have also eliminated the need for an hourly rate
parameter in the Employee constructor - we only specify the
name and ssn. We likewise have eliminated the weeklyPay()
method, since this is different for each subclass, and each
implementation uses a field specific to that subclass.

- hourlyRate: double

SalariedEmployeeHourlyEmployee

+ HourlyEmployee
 (String,String,double)
+ weeklyPay(): double

Employee

- name
- ssn

+Employee(String,
 String)
+ getName() : String
+ getSSN(): String

- annualSalary: double

+ SalariedEmployee
 (String,String,double)
+ weeklyPay(): double

18

d) However, this solution introduces a new problem. The following
code, which we used above, would no longer work: (PROJECT
AGAIN)

 
 

Why?

ASK

There is no method called weeklyPay() declared in class Employee,
though there is such a method in its subclasses. Since the array
employees is declared to be of class Employee, the code

employees[i].weeklyPay()  

will not compile. (The compiler is not aware of a class’s
subclasses when it compiles code referring to it - and, in general,
cannot be aware of its subclasses since new ones can be added at
any time.)

e) How might we solve this problem? Note that the type of the
array has to be Employee, since individual elements can be of
either of the subclasses.

ASK

We could solve this problem by adding a weeklyPay() method
to the Employee class. But what should its definition be? As it
turns out, it doesn’t matter, since we know that it will be
overridden in the subclasses. So we could use a dummy
implementation like: (PROJECT)

public double weeklyPay()  
{ return 0; }  

However, there are problems with this

ASK WHY

Employee [] employees = new Employee[10];  
...  
for (int i = 0; i < employees.length; i ++)  
 printCheck(employees[i].getName, employees[i].weeklyPay());  

19

(1)t is confusing to the reader

(2) if we accidentally did create an object directly of class
Employee (which we would be allowed to do), we would get
in trouble with the minimum wage laws!

3. To cope with cases like this, Java allows the use of abstract
methods.

a) An abstract method uses the modifier abstract as part of the
declaration, and has no implementation - the prototype is
followed by a semicolon instead. It serves to declare that a
given method will be implemented in every subclass of the class
in which it is declared.

Example: We could declare an abstract version of weeklyPay in
class Employee as:

public abstract double weeklyPay();

b) A class that contains one or more abstract methods must itself
be declared as an abstract class. (The compiler enforces this):

(1)Example: (PROJECT)

public abstract class Employee  
{  

...

(2)An abstract class cannot be instantiated - e.g. the following
would now be flagged as an error by the compiler

new Employee(...) (PROJECT)

This is because an abstract class is incomplete - it has
methods that have no implementation, so allowing the
creation of an object that is an instance of an abstract class
could lead to an attempt to invoke a method that cannot be
invoked.

20

(3)A class that contains abstract methods must be declared as
abstract. The reverse is not necessarily true - a class can be
declared as abstract without having any abstract methods.
(This is done if it doesn’t make sense to create a direct
instance of the class.)

c) Note that, in general, an abstract class can contain a mixture of
ordinary, fully-defined methods and abstract methods.

EXAMPLE: The Employee class we have used for examples
might contain methods like getName(), getSSN(), etc. which are
common to all kinds of Employees - saving the need to define
each twice, once for HourlyEmployee and once for Salaried
Employee.

d) Note that a subclass of an abstract class must either:

(1)Provide definitions for all of the abstract methods of its base
class.

or

(2)Itself be declared as abstract, too.

e) Sometimes, a non-abstract class is called a concrete class.

4. Distribute, go over, handout of Employee class hierarchy.

a) Abstract class - Employee - and method weeklyPay()

b) final methods - getName(), getSSN() in Employee

c) Call to super() constructor in constructors for HourlyEmployee
and SalariedEmployee

d) Overrides of toString() in HourlyEmployee and SalariedEmployee,
with explicit use of superclass version in implementation

21

e) Polymorphic calls to weeklyPay()

f) Demo: run class EmployeeTester.

C. Suppose we take the notion of an abstract class and push it to its limit -
i.e. to the point where all of the methods are abstract - none are
defined in the class itself. Such a class would specify a set of
behaviors, without at all defining how they are to be carried out.

1. In Java, such an entity is called an interface, rather than a class.

a) Its declaration begins

[public] interface Name ...

An interface is always abstract; the use of the word abstract in
the interface declaration is legal, but discouraged.

b) An interface can extend any number of other interfaces, but
cannot extend a class.

c) All of the methods of an interface are implicitly abstract and public;
none can have an implementation. The explicit use of the modifiers
abstract and/or public in declaring the methods is optional, but
discouraged

EXAMPLE: Inside the declaration of an interface, the following are
equivalent

public abstract void foo();// Discouraged style  
public void foo(); // Discouraged style  
abstract void foo(); // Discouraged style  
void foo();  

PROJECT

And the following is illegal:

22

void foo()  
{ anything }  
 
PROJECT

d) Interfaces can also declare static constants. Any variable
declared in an interface is implicitly public, static, and final, and
must be initialized at the point of declaration. The explicit use
of the modifiers public, static, and/or final in declaring a
constant is legal, but discouraged.

e) Interfaces cannot have:

(1)Constructors

(2)Instance variables

(3)Non-final class variables

(4)Class (static) methods

2. A Java class can implement any number of interfaces by including
the clause

implements Interface [, Interface]...

in its declaration.

A class that declares that it implements an interface must declare
and implement each of the methods specified by the interface - or
must be declared as abstract - in which case its concrete subclasses
must implement any omitted method(s).

3. Why does Java have interfaces as a separate and distinct kind of
entity from classes?

23

a) An interfaces is used when one wants to specify that a class
inherits a set of potential behaviors, without inheriting their
implementation.

b) Interfaces provide a way of dealing with the restriction that a
class can extend at most one other class. A class is allowed to
extend one class and implement any number of interfaces.

D. The book develops a more complex example of this - a hierarchy of
Robots

1. Project hierarchy (Figure 4-29 on page 104) and various ways of
implementing perform() (Table 4-4 on page 105)

2. Questions about this (do in groups)

a) Which classes should be abstract?

Robot, Humanoid, DomesticRobot, and AlienRobot

b) Does perform() actually need to be defined as an abstract
method in all of them? (The class diagram implies that it is - is
this really necessary)

No - it only needs to be defined in the top-level class - Robot -
and the bottom level classes. The other three abstract classes do
not need to include declarations for perform(), since it is
inherited from the base class.

c) The book gives an example of code for ButlerRobot

PROJECT Figure 4.30

The code given sets the instance variables of the superclass
directly. Let's rewrite it using the super constructor, and
assuming DomesticRobot has constructor

DomesticRobot(String meansOfMobility, String language)

24

V. The Use and Misuse of Inheritance

A. Inheritance can be a very powerful and useful tool, saving a great deal
of redundant effort.

1. Unfortunately, inheritance can be - and often is - misused. So we will
want to consider both how to use inheritance and how not to use it.

2. A cardinal rule for using inheritance well is the rule of substitution.

ASK

If a class B inherits from a class A, then it must be legitimate to use
a B anywhere an A is expected. That is, it must be legitimately
possible to say “a B isa A”.

B. Actually, there are a variety of reasons for using inheritance in the design
of a software system - including some not so good ones! One writer,
Bertrand Meyer, has written a classic article in which he identified twelve!
Some of the uses identified in Meyer’s article are fairly sophisticated. I
will draw on his work here, but in simplified form. Broadly speaking,
Meyer classifies places where inheritance can be used as:

1. Model inheritance - when the inheritance structure in the software
mirrors a hierarchical classification structure in the reality being
modeled by the software.

a) One key feature of human knowledge is that many fields of
learning have classification systems:

(1)The taxonomic system of biology

(2)The Dewey Decimal and Library of Congress systems used
in libraries.

(3)Other examples?

ASK

25

b) When the reality we are working with has such a natural hierarchy,
we may want to reflect that hierarchy in our software. However,
Meyer warns about what he calls “taxomania” - the tendency to go
overboard with classification hierarchies in software. In particular,
there is a danger of creating too many levels in a hierarchy, without
enough distinctions between classes at a level.

c) In general, we want to reflect a natural hierarchy in our software
if the different objects we are working with fall into classes that
have enough significant differences in attributes and behavior to
make classification worthwhile.

EXAMPLE: In the library problem, the items the library checks
out can be categorized as book and DVD. These probably have
enough distinctions to warrant two classes inheriting from a
common “Item” base class, because the information we need to
store about each is different, and their behaviors are a bit
different

(1)Books: store call number, title, author. When checked out, a
book can be renewed.

(2)DVD: store call number, description, lead actor. Cannot be
renewed.

2. A second broad type of inheritance is what Meyer calls software
inheritance. Here, the inheritance structure reflects a hierarchy that
does not exist in the reality being modeled, but is useful
nonetheless in the software.

a) Actually, as it turns out, what Meyer calls software inheritance
shows up in UML models in two places - here, and under
realization. We’ll discuss the latter case later.

b) One common motivation for this sort of inheritance is to facilitate
polymorphism. Suppose we want to create a collection class whose

26

elements are to be various sorts of objects - e.g. perhaps a home
inventory that lists the different items found in our home (useful
information in case of a fire or theft.) In order to place these
different items in the same polymorphic container, they would need
to all derive from a common base class, which is the class of things
the collection actually stores. (E.g. in this case, we might create a
class HomeAsset and make things like furniture, books, artwork,
electronic equipment etc. inherit from it.)

NOTE: In this case, the common base class will most likely be
abstract.

EXAMPLE: The Transaction class hierarchy in the ATM system
can be regarded as an example of this. The class Session needs to
be able to refer polymorphically to different types of Transaction,
which are made subclasses of a common abstract base class.

c) Another motivation for using software inheritance is to reuse
work already done. When we are designing a new class, it is
worth asking the question “is there any already existing class
that does most of what this class needs to do, which I can
extend?”

(1)However, we need to proceed cautiously when we do this,
because this kind of inheritance can easily be abused. When
extending an existing class to create a new class, we should
ask questions like:

(a)Is the law of substitution satisfied?

If the law of substitution is not satisfied, then we are
almost certainly abusing inheritance.

(b)Are we mostly adding new attributes and methods to the
existing class, or changing existing methods to do
something entirely different? In the latter case, we are

27

likely abusing inheritance - extension means “adding to”
an existing set of capabilities.

(c)Are all (or at least most) of the existing methods of the
base class relevant to the new class? If not, it is again
likely that we are abusing inheritance.

(2)Note that, in cases like this, we generally do not have to
create the base class - instead, we use an existing class to
help create a new one.

(a)This is most likely to happen in cases where the base class
has been designed from the beginning to facilitate extension.
(I.e. we usually consider extending classes whose initial
designer created them with the intention that they be
extended. Frameworks are often designed this way)

(b)A related idea is that, where appropriate, we should try to
design our classes in such a way as to facilitate later
extension in other applications. This may mean making a
class more general than in needs to be for a specific
application, in order to facilitate later reuse.

3. A third broad type of inheritance Meyer identifies is called variation
inheritance. Here, a class B inherits from a class A because it
represents some sort of variation of A. Meyer describes this sort of
inheritance this way: “Variation inheritance is applicable when an
existing class A, describing a certain abstraction, is already useful by
itself, but you discover the need to represent a similar though not
identical abstraction, which essentially has the same features, but with
different signatures or implementations.” (p. 829)

We will not discuss this type of inheritance further; its applications are
a bit more sophisticated than what we’re dealing with here.

C. A danger particularly with both software inheritance and variation
inheritance (but less so with model inheritance) is letting apparent

28

convenience lead to misuse of inheritance. For example, Meyer cites
a well-known software engineering text that develops the following
scenario, using multiple inheritance:

PROJECT

Clearly, having CarOwner inherit from Person makes sense - a car
owner is a person - but making CarOwner inherit from Car is another
story! The justification is that Car has attributes like registration
number and excise taxes due that legitimately apply to a CarOwner as
well - but we don’t want to saddle a CarOwner with having to have a
carburetor, four tires, and brakes!

1. This example, and others like it, typically fail the fundamental law
of substitution test. A CarOwner simply cannot be substituted for a
car. (Try spending some time in a car wash!)

2. The mistake that is often made is confusing the “has a” relationship
(association) with the “isa” relationship (inheritance). A correct
way to represent the structure of the problem would be to use
inheritance in one case, and association in the other:

CarOwner

Person Car

29

PROJECT

(By the way, note that doing it this way lets us allow for the
possibility that an owner might have several cars, and that a car
might have joint owners.)

D. In Java, inheritance is specified by using the keyword extends.

1. The class being extended may be either abstract or concrete.

2. As you know, Java allows a class to only extend one other class -
i.e. it does not support multiple inheritance - something which
many OO languages do support - but which introduces some
interesting complexities we won’t get into now.

VI.Miscellaneous Issues

A. The final modifier on methods

1. When a class is going to be extended, it may be that some of its
methods should not be subject to being overridden. In this case,
they can be declared as final.

EXAMPLE: If the class Employee has a getName() method for
accessing the employee’s name that cannot meaningfully be
overridden, the method could be declared as

CarOwner

Person Car

1..*

1..*

30

PROJECT

2. Declaring a method as final when it cannot be overridden allows
the compiler to perform some optimizations that may result in more
efficient code, so adding final to a method declaration where
appropriate is worthwhile.

B. The Final Modifier on classes

1. Just as an individual method can be declared final, so an entire
class can be declared final. (E.g. public final class ...).

2. A final class cannot be extended. This serves to prevent unwanted
extensions to a class - e.g. the class java.lang.System is final.

C. Multiple inheritance.

1. We have talked about a lot of things that Java can do. We now
must consider one capability present in many OO languages that
Java does not support: multiple inheritance.

2. Sometimes, it makes sense for a single class to generalize two (or
more) bases classes. We call such a situation multiple inheritance.

a) The following example is given by Meyer:

public final String getName()  
{  
 return name;  
}

31

PROJECT

(1)An airplane that is owned by a corporation (a company
plane) is, at the same time, both an airplane and a company
asset (in terms of bookkeeping)

(2)As an airplane, it has properties like manufacturer, model,
range, capacity, runway length needed, etc.

(3)As an asset, it has properties like cost, depreciation rate,
current value, book value etc.

b) Here’s another example:

PROJECT

CompanyPlane

Airplane Asset

Dog

Mammal Pet

32

c) However, multiple inheritance is easily misused. It is easy to
create questionable (or obviously bad) examples. For example,
the following is sometimes cited as an example of a place where
multiple inheritance is useful, but is really a fairly bad example:

PROJECT

3. Multiple inheritance can give rise to some interesting problems.
We will consider two - there are others.

a) Features with the same name in two different base classes.

Example: The company plane example. Suppose that the class
airplane had a field called rate (meaning speed), and the class asset
had a field called rate (meaning depreciation rate.) If we declared

CompanyPlane p;

what would p.rate mean?

(Arguably, this might not happen in this particular case - but it
could. If it did, we could avoid it by changing the name of the field
in one of the base classes - if we had access to the source, and if we
could then change all the uses of the old name in other software
that used this class - a nontrivial task.)

Duck Decoy

Duck Wooden Decoy

33

b) Repeated inheritance.

Example: Consider the following situation, which could arise if
multiple inheritance is used. (Perhaps in a research university) - and
how the objects in question would need to be laid out in memory.

PROJECT

(1)Student

Inherited
fields from
Person

Fields unique
to Student

34

(2)FacultyMember

(3)∴ GraduateStudentInstructor

PROJECT

Note that the straightforward layout of a TA object contains
two copies of the Person fields - leading to all sorts of
potential ambiguities.

Inherited
fields from
Person

Fields
unique
to Faculty
Member

Inherited
fields from
Person

Fields unique
to Faculty
Member

Inherited
fields from
Person

Fields unique
to Student

35

4. Programming languages that support multiple inheritance have to
deal with these complexities in some way.

EXAMPLE: C++

a) The possibility of having the same field name (or method name)
occur in two different base classes is dealt with by allowing the
use of a class name as a qualifier.

e.g. Airplane::rate is the rate field inherited from class Airplane.

b) The possibility of repeated inheritance can be dealt with by
something called a virtual base class - which we won’t discuss!
(Suffice it to say it’s a tad messy!)

5. Java does not support multiple inheritance. Since multiple
inheritance is not often really needed, this is not a major issue. If it
is needed, there are two ways to get the job done in Java:

a) If only the interface needs to be inherited, but not the
implementation, then Java interfaces can be used.

(1)A Java class can implement any number of interfaces

Example - the main frame in a GUI

class ___________ extends Frame  
implements ActionListener, WindowEventListener  

{  
...

b) We can use containment.

Example: the CompanyPlane class in Java

36

GradateStudentInstructor

Student FacultyMember

Person

(1)implement as

(or)

(2)Then use “forwarding” of methods - example (first case)

class CompanyPlane extends Asset  
{  

Airplane myInnerPlane;  
 

public int getCapacity()  
{  

return myInnerPlane.getCapacity();  
}  

...  
 
PROJECT

VII.Activity

Do Exercise 4.1 in book - break class into groups of 3-4, and assign board
space to each.

CompanyPlane

Airplane

Asset

CompanyPlane

Asset

Airplane

37

